The world is on the verge of introducing a quantum computer - a powerful computer that can perform complex tasks simultaneously within seconds. It is given great credit and there are plenty of industry applications of quantum computers that might change everything beyond recognition. Today’s research results and quantum computers are promising. Startups receive huge fundings and advance in their quantum computing capabilities. However, there are questions surrounding this leveraging technology. When are we going to see its kick-off? So, to understand the time frames, let's draw a line on what we know about quantum computers so far!
What is a Quantum Computer vs a Classical Computer?
According to NewScientist, a quantum computer is a machine that uses quantum physics theories to store data and perform various computations. Quantum computers can outperform even today's best supercomputers. They win against classical computers when there is a need to process a large number of possible combinations. These computers carry out the task simultaneously alongside finding prime factors of a very large number or the best route between two places.
Classical computers encode information in binary “bits” that are either 0s or 1s. That’s why we call these computers binary. A quantum computer’s basic memory unit is a qubit also known as a quantum bit. Physical systems that include electrons and photons create qubits. These qubits can be 0s and 1s at the same time and in many combinations.
When qubits remain in many arrangements at once they form a quantum superposition. Also, when they inextricably link together but represent different things simultaneously, qubits form quantum entanglement. If qubits are scattered, this process is called quantum decoherence.
Being so powerful, why aren’t there any quantum computers available for users? Mainly, because they are still new and “experimental”, residing in a lab environment. Quantum computers react sensitively towards heat, electromagnetic fields, and collisions with air molecules, which can cause qubits to lose their quantum properties and give out wrong results. In other words, qubits fail to work appropriately outside their specifically created environment. There is a belief that classical computers can outperform quantum ones in specific tasks. However, the future looks rather like a combination of both computers.
Quantum Computer Market Outlook
Quantum technologies will be on top in a few years as today they are one of the leveraging technologies to come. It is projected that by 2040 the market revenue will amount to $93 billion. What can quantum technologies offer? So far, there are three major quantum use cases. These are:
Imagine implementing quantum into our daily lives and what will it bring afterward! We could benefit from quick solutions to complex matters within seconds and achieve unheard success. Instead of imagining and talking about theoretical outputs, the world wants to see quantum computers soon and does everything possible to make them a reality. That’s why industries working with large volumes of data make attempts to engage in quantum technologies. About 40% of organizations in the telecommunications, aerospace, automotive, life sciences, energy and chemicals, and banking industries look forward to quantum computer launch onto the market.
Moreover, in 2022, most scientists and technicians from the scientific and technical services industry have researched quantum computing possibilities to enhance their performance and business results. Transportation and mobility industry representatives were surveyed and solving machine learning and data analytics problems were the most desired applications for quantum computing.
Quantum computers would be able to do calculations that we can't currently do and others that would take many months or years. The potential of doing those in days would just transform our design systems and lead to even better engines. - Prof Leigh Lapworth, quantum computing development lead at Rolls-Royce
Benefits of Quantum Computers for Businesses
Industries
There are numerous benefits quantum computers can offer to industries. The detailed applications are offered in the table below.
With such a quantity of industry applications, quantum computers bring business operations to a new level of efficiency with effective at-key solutions. For instance, you will obtain:
Increased speed
Improved efficiency
Enhanced security
New opportunities
Real-time simulation
Quantum Fundings and Adoption
Market giants like Amazon, IBM, Google, and Microsoft have set their focus on quantum computing as it might solve their most complex business problems as well. Also, quantum computing is the perfect technology trend to invest in. In 2019, IBM’s startup presented its first commercial quantum computer. It is the IBM Q System One that sides outside of the laboratory environment.
Among countries, that would like to fund quantum computing research and development, there’s China. The country has invested $15.3 billion, which is eight times bigger than the United States and more than double what the EU planned to invest.
What concerns quantum adoption, China and Netherlands are the leading countries here. More than 40% of the responders in both countries are either starting to work on or plan to work with quantum computers. 65% of International Data Corporation (IDC) survey respondents would like to use quantum computing via the cloud.
Quantum Computing Startups
Today, there’s a large quantum startup ecosystem that is booming. In 2021, the United States, Canada, and the United Kingdom had the largest number of quantum computing startups.
At least 40% of these startups are heavily involved in quantum computer research and experiments. However, not only startups work on innovations in quantum computing. There are also 33% of universities involved. Universities bring a good share of research that gives the best insights about quantum computer technologies born in laboratories. Among the startups, you can find both new and top performers on the market:
Programming Languages for a Quantum Computer
The programs designed specifically for quantum computers should adhere to mathematics and quantum mechanics principles. With the demand for a scientific approach, quantum computers utilize corresponding programming languages. The latter are categorized by how they evaluate and qualify quantum algorithms. Also, by their specific execution, and examination of the fundamentals of a quantum system.
According to Quantum Insider, the top 5 programming languages to consider today are:
Python - Actual Quantum Programming Language
Qiskit - Open-source Programming Tool from IBM
Ocean™ - Quantum Computing Programming Suite from D-Wave Systems
Q# - Quantum Computing Programming Algorithm from Microsoft
Cirq - AI Programming Language from Google
These programming languages function at the level of a gate or a building block. If there is a need for a building block and it is not yet implemented, a specification of the exact sequence of interconnections between qubits and quantum gates should be done. This process reminds of a digital circuit with AND, OR, and NOT logical gates. It works perfectly for dozens of logical gates, but in the process of scaling to thousands or millions of gates, it is practically impossible.
Implementing business logic and object abstraction for any application or industry can be easily done using the OOP capabilities of the respective languages. For instance, Python is the easiest and most well-known approach in the case of quantum computing. It can be used as a wrapper around quantum languages that are more low-level. Using conventional relation and non-relational databases should be implemented in Python and also using popular ORM technologies such as SQLAlchemy.
Post-Quantum Cryptography (PQC)
Being fast in calculations and using quantum physics phenomena, it becomes easy for quantum algorithms to break the security of sensitive data and communications. However, this is considered a fraud and can compromise the positive impact of any quantum breakthrough. Therefore, there are cryptographic algorithms that resist quantum computer attacks. This notion is called post-quantum cryptography.
With quantum computer advancements, there’s been more and more PQC research with a set goal to develop strong cryptographic algorithms that can secure against attacks of classical and quantum computers. These algorithms are powered by mathematical problems that are hard to solve by quantum computers. For example, lattice-based cryptography, code-based cryptography, hash-based cryptography, and multivariate cryptography.
With the ongoing research in quantum computing, it is expected that most of the post-quantum cryptography algorithms are going to be broken soon. This kind of threat to security and communications is too dangerous. Therefore, PQC is being studied by academic researchers, government agencies, and industry stakeholders to ensure that secure and effective cryptographic algorithms are available for use in the post-quantum era.
Our Quantum Computer Experience
Sencury waits for quantum computers to enter the software development market. In addition, we are more than ready to work with quantum computing cloud possibilities that already exist. We can provide solutions for different industries. Sencury’s team are experts both in technical aspects and science. So, we have both the knowledge and the potential to offer real positive change.
Among the offered services, our clients can benefit from
consulting on the possibilities of quantum computers, where our expert helps to understand what can and cannot be done on a quantum computer
preparing functional and non-functional requirements specifications for a concrete quantum solution
integrating quantum and non-quantum software layers properly
designing a solution architecture using a quantum paradigm
To implement all of these solutions we use the quantum programming languages mentioned above. Become our business partner and discover the power of quantum computing!
Comments